Qué es la tecnología de big data

La analítica de big data es el uso de técnicas analíticas avanzadas contra conjuntos de big data muy grandes y diversos que incluyen datos estructurados, semiestructurados y no estructurados, de diferentes fuentes y en diferentes tamaños, desde terabytes hasta zettabytes.

¿Qué son exactamente los big data? Puede definirse como conjuntos de datos cuyo tamaño o tipo supera la capacidad de las bases de datos relacionales tradicionales para capturar, gestionar y procesar los datos con baja latencia. Las características de los big data incluyen un alto volumen, una alta velocidad y una gran variedad. Las fuentes de datos se están volviendo más complejas que las de los datos tradicionales porque están siendo impulsadas por la inteligencia artificial (IA), los dispositivos móviles, los medios sociales y el Internet de las cosas (IoT). Por ejemplo, los diferentes tipos de datos proceden de sensores, dispositivos, vídeo/audio, redes, archivos de registro, aplicaciones transaccionales, web y medios sociales, muchos de ellos generados en tiempo real y a muy gran escala.

Con la analítica de big data, puede impulsar una toma de decisiones mejor y más rápida, la modelización y predicción de resultados futuros y la mejora de la inteligencia empresarial. A la hora de crear su solución de big data, considere el software de código abierto como Apache Hadoop, Apache Spark y todo el ecosistema Hadoop como herramientas de procesamiento y almacenamiento de datos rentables y flexibles, diseñadas para manejar el volumen de datos que se genera hoy en día.

Leer más  Que es una startups

Ejemplos de big data

El uso actual del término big data tiende a referirse al uso de la analítica predictiva, la analítica del comportamiento del usuario o algunos otros métodos avanzados de análisis de datos que extraen valor de los big data, y rara vez a un tamaño concreto del conjunto de datos. “Hay pocas dudas de que las cantidades de datos disponibles ahora son realmente grandes, pero esa no es la característica más relevante de este nuevo ecosistema de datos”[4].

El tamaño y el número de conjuntos de datos disponibles han crecido rápidamente a medida que los datos son recogidos por dispositivos como los móviles, los baratos y numerosos dispositivos de detección de información del Internet de las cosas, los aéreos (teledetección), los registros de software, las cámaras, los micrófonos, los lectores de identificación por radiofrecuencia (RFID) y las redes de sensores inalámbricos. [8][9] La capacidad tecnológica per cápita del mundo para almacenar información se ha duplicado aproximadamente cada 40 meses desde la década de 1980;[10] en 2012 [actualización], cada día se generaban 2,5 exabytes (2,5×260 bytes) de datos[11] Según la predicción de un informe de IDC, se preveía que el volumen mundial de datos crecería exponencialmente de 4,4 zettabytes a 44 zettabytes entre 2013 y 2020. Para 2025, IDC predice que habrá 163 zettabytes de datos[12]. Una cuestión para las grandes empresas es determinar quién debe ser el propietario de las iniciativas de big data que afectan a toda la organización[13].

Minería de textos: conceptos, implementación…

En pocas palabras, los big data son conjuntos de datos más grandes y complejos, especialmente los procedentes de nuevas fuentes de datos. Estos conjuntos de datos son tan voluminosos que el software de procesamiento de datos tradicional no puede gestionarlos. Pero estos volúmenes masivos de datos pueden utilizarse para resolver problemas de negocio que antes no habrían podido abordarse.

Leer más  Master voy a por ello

La velocidad es la rapidez con la que se reciben los datos y (quizás) se actúa sobre ellos. Normalmente, la mayor velocidad de los datos se transmite directamente a la memoria en lugar de escribirse en el disco. Algunos productos inteligentes con acceso a Internet funcionan en tiempo real o casi en tiempo real y requieren una evaluación y acción en tiempo real.

Corporación oracle

Big data es un término que describe los grandes volúmenes de datos difíciles de gestionar -tanto estructurados como no estructurados- que inundan las empresas en su día a día. Pero lo importante no es sólo el tipo o la cantidad de datos, sino lo que las organizaciones hacen con ellos. Los grandes datos pueden analizarse para obtener información que mejore las decisiones y dé confianza para tomar medidas empresariales estratégicas.

El término “big data” se refiere a los datos que son tan grandes, rápidos o complejos que son difíciles o imposibles de procesar con los métodos tradicionales. El acto de acceder y almacenar grandes cantidades de información para su análisis existe desde hace mucho tiempo. Pero el concepto de big data cobró impulso a principios de la década de 2000, cuando el analista de la industria Doug Laney articuló la definición de big data, que ahora es la más extendida, como las tres V:

Volumen.  Las organizaciones recopilan datos de diversas fuentes, como transacciones, dispositivos inteligentes (IoT), equipos industriales, vídeos, imágenes, audio, redes sociales y otros. En el pasado, almacenar todos esos datos habría sido demasiado costoso, pero el almacenamiento más barato mediante lagos de datos, Hadoop y la nube ha aliviado la carga.